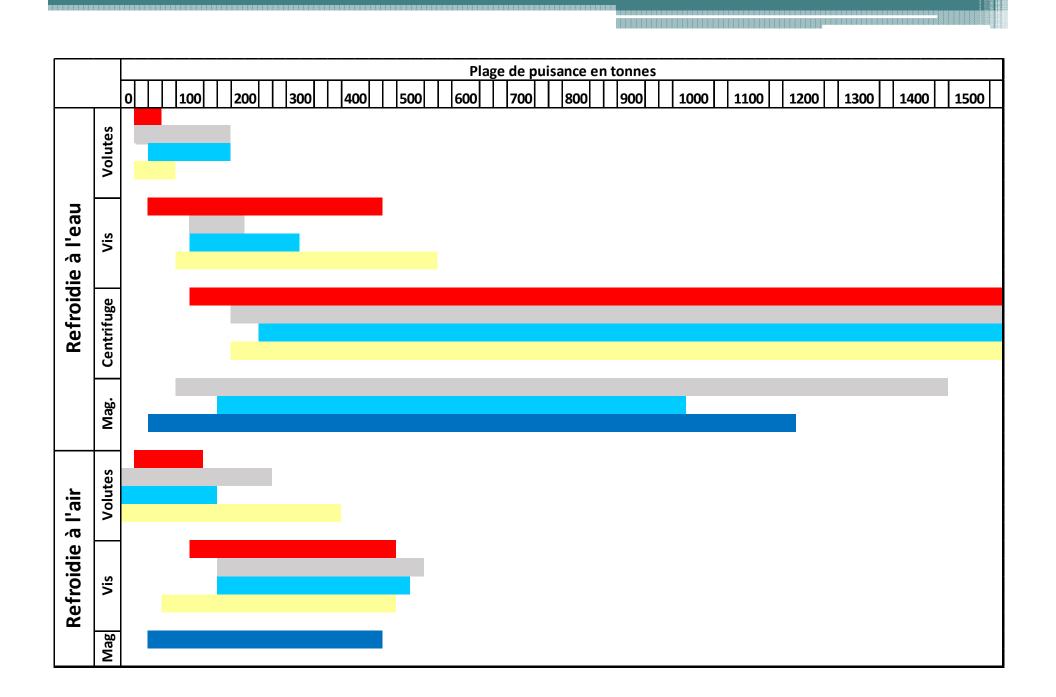

Les refroidisseurs d'eau : performances et caractéristiques


ASPE Québec Janvier 2016

Présenté par : Carl Gauthier, ing. LGT inc.

Agenda de la présentation

- Un résumé de l'offre actuelle des refroidisseurs
- Survol sur les type de refroidisseurs et leurs applications
- Réfrigérants d'aujourd'hui et de demain
- Choix du concepteur Options et caractéristiques
- Volume minimal pour une opération stable
- Remplacement de refroidisseurs déterminer la puissance requise
- Les nouveautés des principaux joueurs
- Questions

Type de refroidisseurs d'eau

On distingue principalement les refroidisseurs d'eau selon trois (3) grandes familles :

- Par type de compresseur
- En fonction de l'arrangement des composants
- Refroidie à l'eau ou à l'air

Type de refroidisseurs d'eau – par compresseur

Compresseur à volutes (scroll)

- Offre: 20 T à 200 T (intérieur), 10 T à 390 T (extérieur)
- Compresseur hermétique
- Compresseur peu coûteux
- Faible efficacité : 0,75 à 1,2 kW/T
- Réfrigérant le plus souvent utilisé : R-410A
- Applications : installation de petite capacité et refroidisseur de récupération (120-140°F)
- Modulation en cascade, digitale ou avec EFV

Type de refroidisseurs d'eau – par compresseur

Compresseur à vis (screw)

- Offre: 75 T à 550 T (intérieur), 80 T à 550 T (extérieur)
- Compresseur hermétique ou ouvert
- Compresseur bruyant (moyennes fréquences)
- Fiable mais les entretiens sont coûteux
- Bonne efficacité : 0,45 à 0,75 kW/T
- Réfrigérant le plus souvent utilisé : R-134a
- Applications : installation de moyenne capacité et refroidisseur de récupération (120-140°F)
- Modulation avec valve à tiroir (sliding valve) et EFV

Le fameux débat : compresseur ouvert VS hermétique / semi-hermétique

Compresseur ouvert:

- Entretien plus facile
- La chaleur du moteur est rejetée dans la salle de mécanique / plus grande efficacité sur papier
- Pratiquement impossible à insonoriser efficacement

Compresseur hermétique / semi-hermétique :

- Utilise le réfrigérant pour refroidir le moteur
- Facile à insonoriser
- Faible dégagement de chaleur
- Hermétique : entretien impossible
- Installation possible dans une salle mécanique poussiéreuse (industriel)

Type de refroidisseurs d'eau – par compresseur

Compresseur centrifuge

- Offre: 120 T à 6000 T
- Compresseur semi-hermétique ou ouvert
- Compresseur bruyant (haute fréquence)
- Très fiable
- Très bonne efficacité : 0,3 à 0,6 kW/T
- Réfrigérant le plus souvent utilisé : R-123 et R-134a
- Applications : installation de grande capacité.
- Récupération de chaleur possible à très basse température (100°F)
- Modulation par aubes directionnelles ou EFV

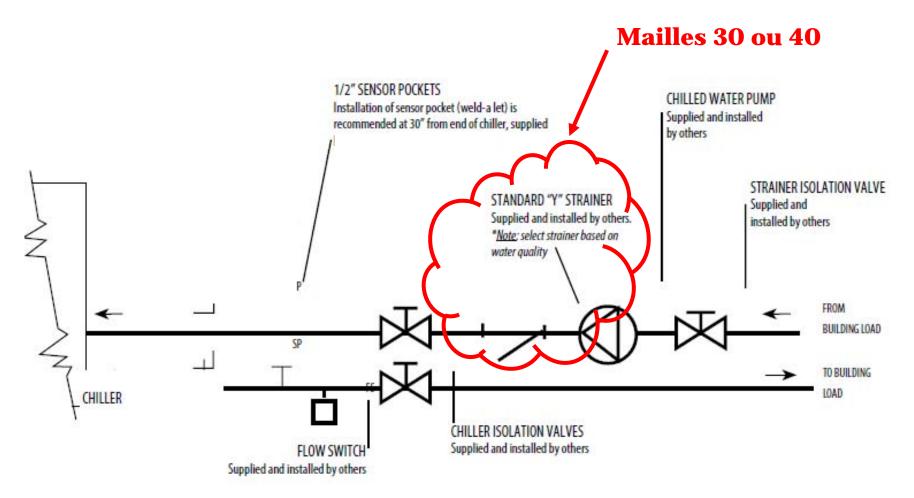
Type de refroidisseurs d'eau – par compresseur

Compresseur centrifuge à roulement magnétique

- Offre: 60 T à 1500 T
- Compresseur semi-hermétique sans huile
- Compresseur très silencieux avec peu de vibration
- Le compresseur le plus dispendieux
- Efficacité : 0,25 à 0,5 kW/T
- Réfrigérant le plus souvent utilisé : R-134a
- Applications : installation de grande capacité, ou le bruit est un enjeux
- Modulation par EFV

Type de refroidisseurs d'eau – par arrangement

Évaporateur et condenseur de type tubes et coquilles


- Configuration conventionnelle
- Possibilité d'avoir plus d'un circuit de réfrigérant par échangeur
- Empreinte très grande
- Dégagement de la même longueur que l'équipe afin de retirer les tubes (généralement 9 à 14 pi)
- Entretien facile
- Montage favorisant l'installation

Type de refroidisseurs d'eau – par arrangement

Refroidisseurs modulaires

- Développés pour le marché du remplacement
- Très faible empreinte au sol
- Échangeur à plaques brasées agissant à titre d'évaporateur et condenseur
- Relève à très faible coût (N+1)

Refroidisseur modulaire

Installation minimale : manomètre de 4,5 po avec 0,5 % de précision

Installation recommandée : transmetteur de pression différentielle relié au SGE

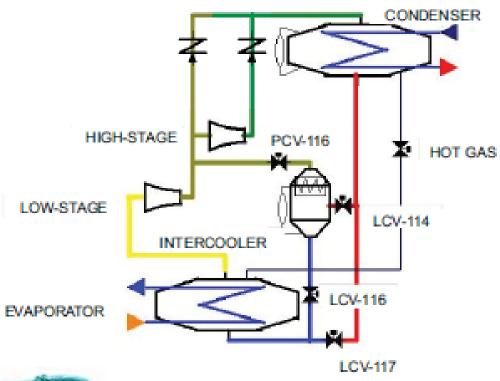
Refroidisseur modulaire

US MESH	micron	Pouces	grosseur de la maille	
4	4750	0,1870	3/16	
6	3350	0,1319	1/8	■ Guide de
7	2810	0,1106	7/64	succion
8	2380	0,0937	3/32	
10	2000	0,0787	5/64	
12	1680	0,0661	1/16	
14	1400	0,0551		
16	1200	0,0472	3/64	
18	1000	0,0394		Tamis
20	853	0,0336	1/32	
25	710	0,0280		vapeur
30	599	0,0236	3/128	
35	500	0,0197		70.1
40	422	0,0166	1/64	Plaques
45	354	0,0139		brasées
50	297	0,0117		
60	251	0,0099		
70	211	0,0083	1/128	
80	178	0,0070		
100	152	0,0060		

Type de refroidisseurs d'eau – par arrangement

Refroidisseurs avec compresseurs en cascade

- Deux (2) compresseurs montés en cascade pour permettre un grand « lift » et une grande plage de température d'opération
- Dispendieux
- Très peu de produits offerts
- Application : récupération de chaleur à haute température (130°F à 170°F)


Refroidisseur avec compresseur en cascade

EVAP			CON	DENSER	LE AVING	WATER	TEMPERA	TURE		
LWT	70 F	80 F	90 F	100 F	110 F	120 F	130 F	140 F	150 F	160 F
TEMP.	21 C	27 C	32 C	38 C	43 C	49 C	54 C	60 C	66 C	71 C
85 F 29 C	n/a	n/a	n/a	n/a	OK					OK
80 F 26 C	n/a	n/a	n/a	, n/a						OK
70 F 21 C	n/a	n/a	n/a	OK						OK
60 F 15 C	n/a	n/a	OK							OK
50 F 10 C	n/a	OK								OK
45 F 7 C	n/a									OK
40 F 4 C	OK									OK
35 F 2 C	OK								OK	n/a
30 F -1 C	OK							OK	n/a	n/a
25 F -4 C	OK						OK	n/a	n/a	n/a
20 F -7 C	OK					OK	n/a	n/a	n/a	n/a

Puissance disponible : 50 T à 250 T

Refroidisseur avec compresseur en cascade

Puissance disponible : 300 T à 2 500 T

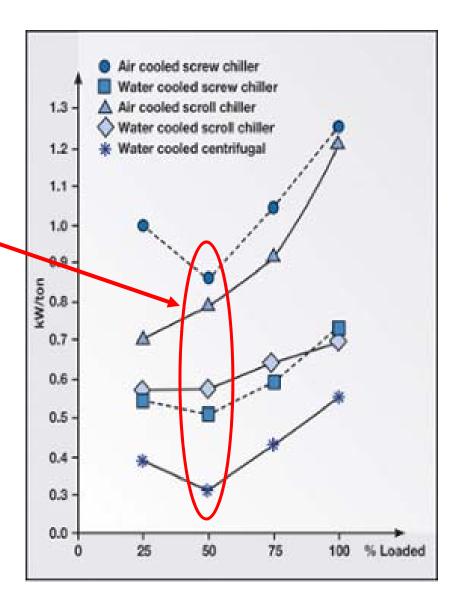
Type de refroidisseurs d'eau – refroidie à l'eau ou à l'air

Refroidisseurs refroidis à l'eau (water cooled)

- Meilleure efficacité que le type refroidit à l'air
- Nécessite beaucoup plus de composants : pompes de condenseur, tour de refroidissement ou refroidisseur de fluide
- Application : installation intérieure, grande capacité de refroidissement

Type de refroidisseurs d'eau – refroidie à l'eau ou à l'air

Refroidisseurs refroidis à l'eau (air-cooled)


- Économique
- Attention au bruit (voisins et étage inférieure)
- Nécessite généralement un réseau d'eau refroidie avec de l'antigel
- Application : installation extérieure, petite à moyenne installation

Exemple : Bâtiment de 14 000 pi² avec unité d'air neuf dédiée avec ventilo-convecteur. Charge de refroidissement entre 30 T et 40T.

Type de refroidisseurs d'eau – sommaire des

efficacités

Point commun : efficacité maximale à charge partielle

Les réfrigérants d'aujourd'hui

Le R-123 (HCFC)

- Réfrigérant basse pression
- Le réfrigérant le plus performant sur le marché
- Utilisé par un seul fabricant pour ces refroidisseurs centrifuges
- ODP: 0,06
- GWP: 76
- Tout comme le R-22, ce réfrigérant sera remplacé dans un avenir rapproché (2020 pour les nouvelles unités)

Les réfrigérants d'aujourd'hui

Le R-410A (HFC)

- Réfrigérant haute pression.
- Pression d'opération 50 % supérieure au R-22
- Utilisé comme réfrigérant de remplacement au R-22 dans les nouvelles unités de petite capacité
- Il s'agit d'un mélange et non d'une seule molécule
- ODP:0
- GWP: 2088

Les réfrigérants d'aujourd'hui

Le R-134a (HFC)

- Réfrigérant basse pression.
- Le réfrigérant le plus performant sur le marché
- Utilisé par un seul fabricant pour ces refroidisseurs centrifuges
- ODP:0
- GWP: 1430
- Tout comme le R-22, ce réfrigérant sera remplacé dans un avenir rapproché

Les réfrigérants de demain

Le R-1234ze (HFO)

- Identifié pour remplacer le R-134a
- Possède une efficacité comparable au R-134a
- Ce réfrigérant est actuellement en production
- ODP:0
- GWP: 7

Les réfrigérants de demain

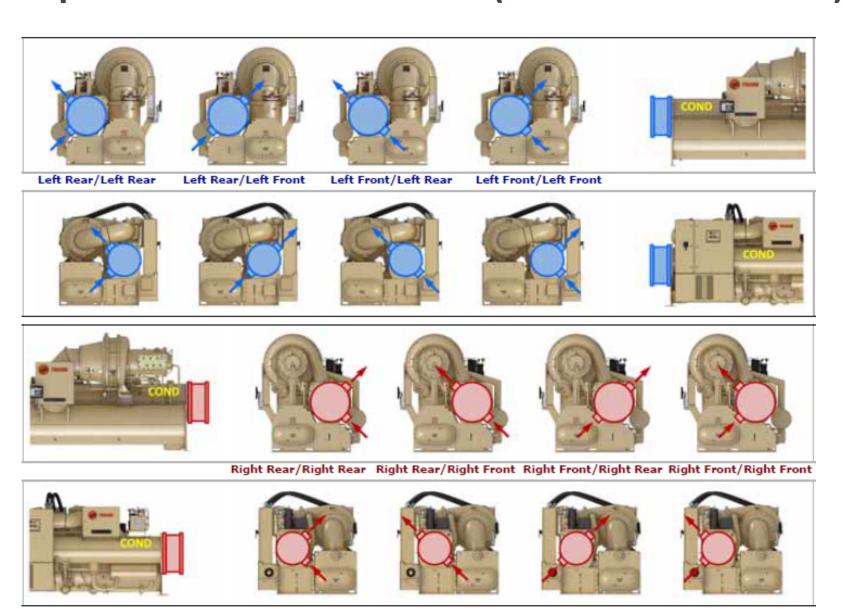
Le R-1233zd (HFO)

- Identifié pour remplacer le R-123
- Possède une meilleure efficacité que le R-123
- Ce réfrigérant est actuellement en production et disponible sur certains refroidisseurs
- ODP:0
- GWP:6

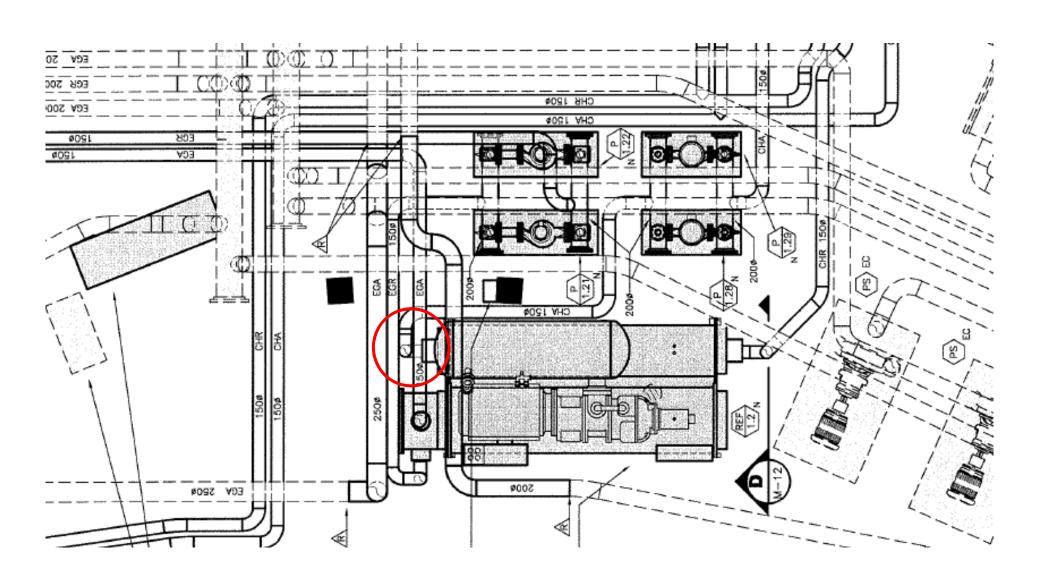
Option: Les boites marines (marine water boxes)

Permet de retirer les tubes d'un évaporateur ou d'un condenseur sans démonter la tuyauterie.

- Facile l'entretien
- Augmente l'empreinte du refroidisseur
- Pas disponible sur tous les refroidisseurs



Boites à eau standard



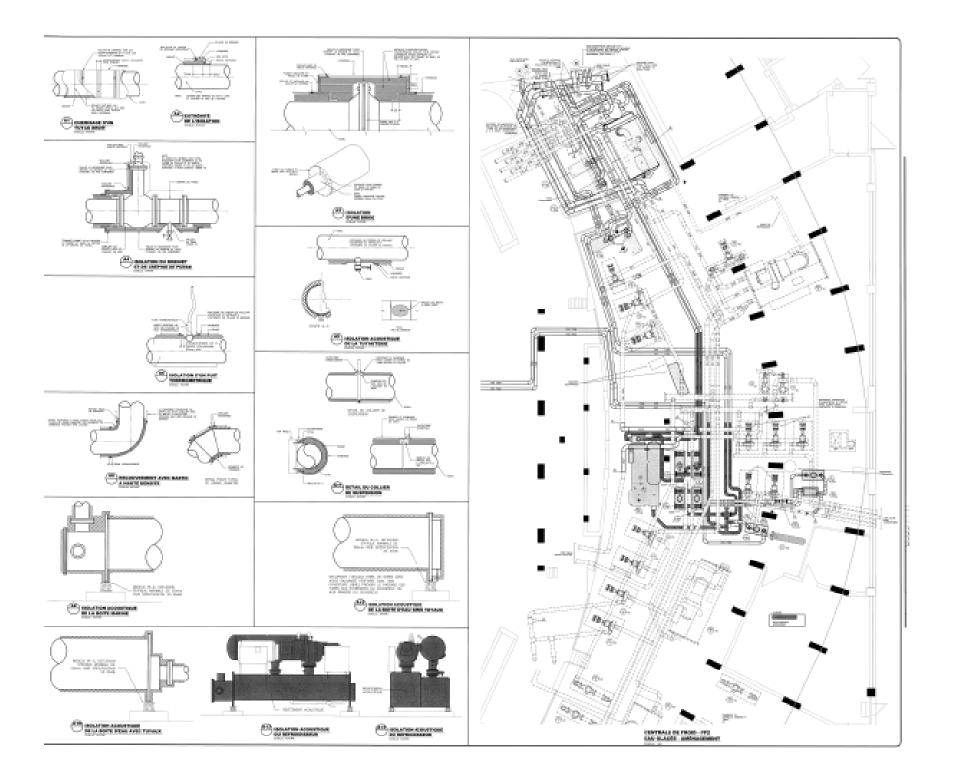
Boites marines

Option: Les boites marines (marine water boxes)

Option: Les boites marines (marine water boxes)

Option: l'isolation acoustique du manufacturier

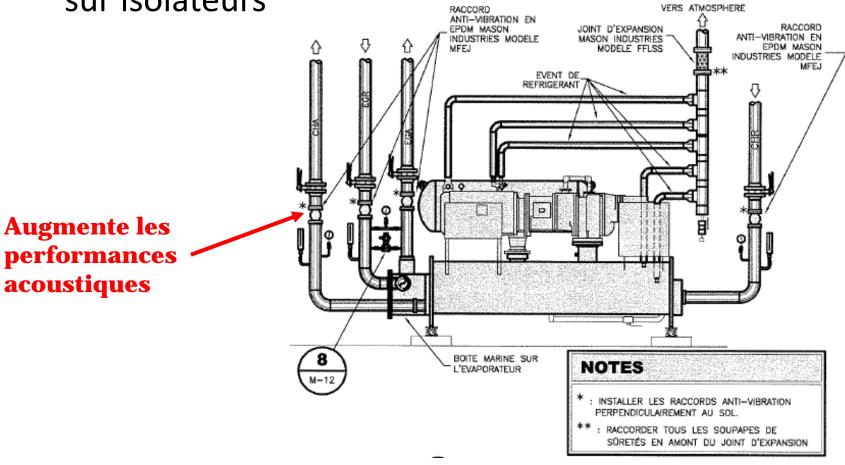
Permet de réduire à <u>faible coût</u> le bruit des compresseurs


- Réalisable seulement sur les compresseurs hermétiques et semi-hermétiques
- Ma recommandation : spécifier toujours l'option la plus performante disponible
- Prévoir des dispositifs anti-vibration (coussins de néoprène ou isolateur
- Le bruit... une question de globalité

Option: l'isolation acoustique du manufacturier

Exemple pour un refroidisseur à vis d'environ 150 T

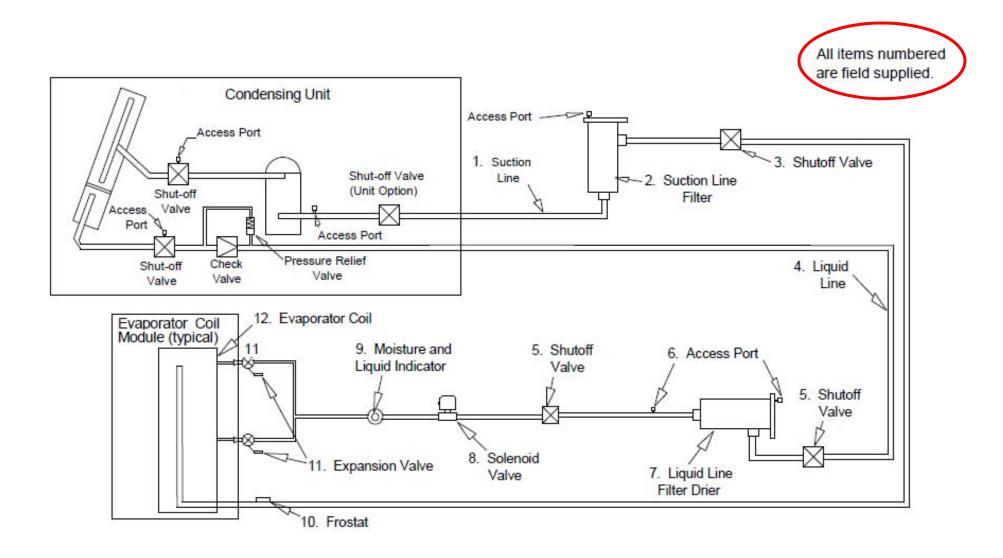
- Compresseur semi-hermétique
- 1^{er} ligne: refroidisseur sans option acoustique
- 2^e ligne: avec l'option la plus performante
- Impossible de réaliser une meilleur atténuation à un coût moindre au chantier


63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
69 db	69 db	82 db	69 db	75 db	73 db	60 db	51 db
65 db	69 db	80 db	61 db	70 db	66 db	55 db	49 db
-4 db	0 db	-2 db	-7 db	-5 db	-7 db	-5 db	-2 db

Option: l'isolation acoustique du manufacturier

Ne pas oublier les joints flexibles si le refroidisseur est

sur isolateurs



Option : évaporateur à distance (remote evap)

Permet de dissocier l'évaporateur d'un refroidisseur monobloc extérieur

- Évite l'ajout d'antigel dans le réseau d'eau refroidie en installant l'évaporateur à l'intérieur du bâtiment
- Évaporateur à plaques brasées ou tubes et coquilles
- Évite l'installation de tuyauterie extérieure
- Ne pas oublier de bien spécifier les accessoires de réfrigération, le remplissage et les diamètres de tuyauterie
- Cette option n'est pas toujours disponible

Option: évaporateur à distance (remote evap)

Option: double condenseurs (double bundle)

Cette option facilite grandement la gestion de la récupération de chaleur

Option en voie d'extinction

Dispendieux

Volumineux

Condenseur 2 Récupération

Condenseur 1 Tour d'eau

Option * : démarreur

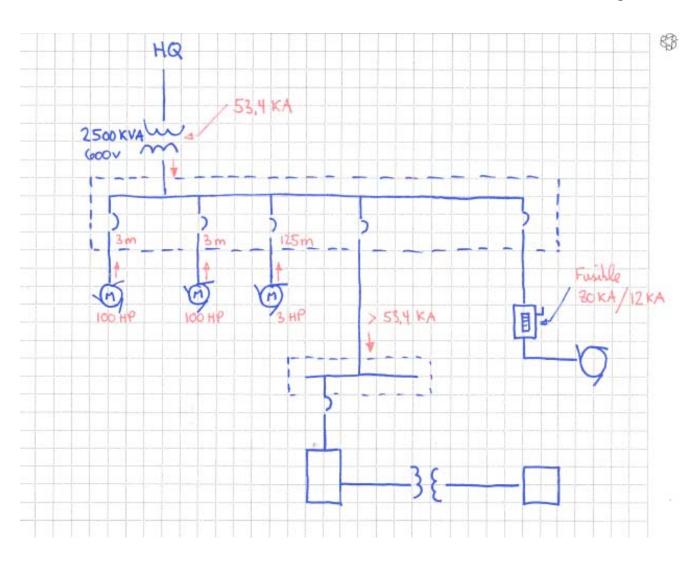
Quatre (4) types:

- <u>Pleine tension (Across-the-Line)</u>: simple et peu cher, petites capacités, courant de démarrage très élevé
- <u>Démarreur électronique (Solid-State)</u>, sécuritaire, compact il protège le moteur et le démarreur en réagissant en 1/120s,
- <u>Démarreur en étoile-triangle (Wye-Delta)</u>, bon marché, courant de démarrage élevé important au départ et en transition Y-delta,
- Entraînement à fréquence variable (VSD), démarrage en douceur, corrige le facteur de puissance quelque soit la charge, améliore l'efficacité du refroidisseur à *lift* partiel.

Option : Capacité des appareillages électriques au niveau du courant de court-circuit (SCCR)

Permet de protéger adéquatement l'équipement en cas de court-circuit électrique dans le bâtiment

- La capacité de court-circuit doit être calculée par un ingénieur électrique
- Spécifier des appareillages électriques pouvant supporter le courant de court-circuit calculé
- Pour les petits refroidisseurs, les options disponibles se limitent souvent à 5 kA ou 10 kA
- Pour des plus gros refroidisseurs, les options 22 kA,
 35 kA ou 65 kA


Option : Capacité des appareillages électriques au niveau du courant de court-circuit (SCCR)

Le courant de court-circuit est dicté par Hydro-Québec

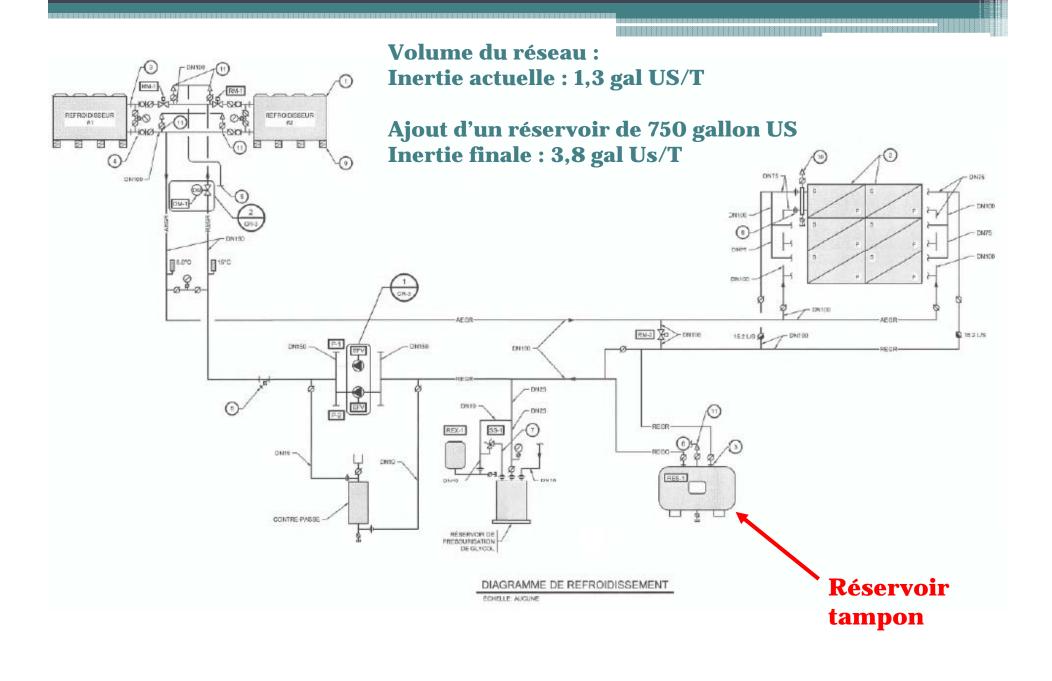
Intensité maximale du courant de court-circuit selon la capacité du poste sur socle

Capacité du poste	Tension disponible (V)	Puissance nominale maximale de trans- formation (kVA)	Courant de court- circuit maximal (A)¹ (valeur efficace symétrique)	Nombre maximal de câbles par phase du client	Nombre de conduits requis
ı		750	33 500	4	4
II		1500	33 500	6	6
Ш	347/600	2500	53 400	8	8
IV ³		3000	62 700	2	2 x 6
V3		4000	80 100	2	2 x 8
		5000	96 100	2	2 x 8
VI	120/240	167	42 000	4	4

Option : Capacité des appareillages électriques au niveau du courant de court-circuit (SCCR)

Volume minimal du réseau d'eau refroidie

Les refroidisseurs demandent un volume d'eau minimal pour avoir une opération stable et éviter les trop nombreux arrêts/départs.


Réflexe à développer chez les concepteurs :

- Le refroidisseur est-il dans la même salle mécanique que tous les serpentins qu'il dessert ?
- La puissance de refroidissement est-elle grande par rapport au nombre de de système de CVCA? (ex : 2 x 150 T sur un système unique de 110 000 PCM)

To ensure consistent operation and tight temperature control, the chilled <u>water loop should be at least two minutes</u>. If this recommendation cannot be followed, and tight leaving water temperature control is necessary, a storage tank or larger header pipe should be installed to increase the volume of water in the system.

For air conditioning applications, a minimum of 3 gallons/ton (3.2 liters/cooling kW) is recommended. It is preferred that the gallon/ton ratio be within the 5 to 8 (5.4 to 8.6 liter/cooling kW) range for constant flow rate chilled liquid systems. See "VARIABLE PRIMARY FLOW" on page 23 for recommendations for VPF systems. For process applications, a minimum of 6 gallons/ton (6.5 liter/cooling kW) ratio is recommended with preference towards a range of 7 to 11 (7.5 to 11.8). Install a tank or increase pipe sizes to provide sufficient liquid volume.

Chilled fluid loop volume — The volume in circulation must equal or exceed 3 gal per nominal ton of cooling (3.25 L per kW) for temperature stability and accuracy in normal air conditioning applications. See Minimum Cooler and Condenser Fluid Flow Rates and Minimum Loop Volume table on page 13. (For example, a 30HR100 would require 294 gal [1112.8 L] in circulation in system loop see Minimum Cooler and Condenser Fluid Flow Rates and Minimum Loop Volume table on page 13.) For process jobs where accuracy is vital, or for operation at ambient temperature below 32 F (0° C) with low unit loading conditions, there should be from 6 to 10 gal. per ton (6.5 to 10.8 L per kW). To achieve this volume, it is often necessary to install a tank in the loop. Tank should be baffled to ensure there is no stratification, and that water (or brine) entering tank is adequately mixed with liquid in the tank.

La fameuse question : quelle puissance dois-je installer pour mon projet de remplacement de refroidisseur?

- Réponse A : la même puissance que l'équipement existant.
- Réponse B : aucune idée... il faut faire l'évaluation.

Je vais vous proposer une méthode simple et efficace sans utiliser un logiciel informatique complexe (boite noire). Basé sur des petits calculs dans Excel.

Exemple: Projet institutionnel à Montréal

No.	Puissance (Tonnes)	Efficacité (kW/T)	Réfrigérant	Date d'installation
177	523	0,8	R11	1979
178	285	0,83	R11	1979
176	221	0,88	R11	1979

Total de 1 029 T Le client proposait 2 x 500 T

Remplacement de refroidisseur – évaluation de la puissance requise Données météo – Tranches BIN

		SE	MAINE		FIN-DE-SEMAINE		
Température	Température			Sa	medi	Dimanche	Heures
ext (F)	ext (C)	7-21h	22-6h	7-18h	19-6h	1-24h	
		HEURES	HEURES	HEURES	HEURES	HEURES	TOTAL
-17,5	-28	2	7	0	2	2	13
-12,5	-25	5	4	2	3	5	19
-7,5	-22	29	44	4	17	21	115
-2,5	-19	62	46	9	16	25	158
2,5	-16	52	47	7	25	32	163
7,5	-14	139	126	13	35	48	361
12,5	-11	72	75	11	24	35	217
17,5	-8	248	190	28	54	82	602
22,5	-5	303	210	17	29	46	605
27,5	-3	278	182	19	53	72	604
32,5	0	169	114	21	56	77	437
37,5	3	296	200	46	94	140	776
42,5	6	155	142	53	22	75	447
47,5	9	202	169	54	18	72	515
52,5	11	349	237	80	40	120	826
57,5	14	187	107	52	16	68	430
62,5	17	400	211	79	42	121	853
67,5	20	374	194	64	36	100	768
72,5	23	382	34	40	37	77	570
77,5	25	104	1	20	9	29	163
82,5	28	84	0	11	2	13	110
87,5	31	8	0	0	0	0	8
	TOTAL	3900	2340	630	630	1260	8760

Systèmes de CVCA et débit d'AF

Étages	Superficie (pi²)	Débit total (PCM)	Air frais moy.	Air frais moy. inocc.	Débit air frais occ. (PCM)	Débit air frais inocc. (PCM)	Horaire moy.
01AR04	85 640	85640	20%	5%	17 128	4 282	6h-22h, 7j/7
02AR05	85 941	85941	20%	5%	17 188	4 297	6h-22h, 7j/7
03AR06	49 204	49204	20%	5%	9 841	2 460	6h-22h, 7j/7
04AR07	30 871	30871	20%	5%	6 174	1 544	6h-22h, 7j/7
05AR08	20 032	20032	20%	5%	4 006	1 002	6h-22h, 7j/7
06AR09	17 112	17112	20%	5%	3 422	856	6h-22h, 7j/7
07AR10	9 158	9158	20%	5%	1 832	458	6h-22h, 7j/7
0MAR02	108 945	108945	20%	5%	21 789	5 447	6h-22h, 7j/7
0MAR03	78 974	78974	20%	5%	15 795	3 949	6h-22h, 7j/7
S1AR01	60 237	60237	20%	5%	12 047	3 012	6h-22h, 7j/7
Total	546 114	485 877	20%		97 175	24 294	
Total climatisé		375 155	0		75 031		

Hypothèses du calcul de climatisati		
Température après le serpentin de clim	55	F
Humidité relative après serpentin de cli	95%	
Enthalpie à 55F / 95%HR	22,7	Btu/lbs

Évaluation des gains internes

Étages	Superficie (pi²)	Éclairage (W/pi²)	Équipem. (W/pi²)	Occup. (pi²/pers)	Occup. (W/pi²)	Total gains int. (kW)	Total gains internes (Tonnes)
01AR04	85 640	0,7	0,3	200	0,7	142	40
02AR05	85 941	0,7	0,3	200	0,7	143	41
03AR06	49 204	0,7	0,3	200	0,7	82	23
04AR07	30 871	0,7	0,3	200	0,7	51	15
05AR08	20 032	0,7	0,3	200	0,7	33	9
06AR09	17 112	0,7	0,3	200	0,7	28	8
07AR10	9 158	0,7	0,3	200	0,7	15	4
0MAR02	108 945	0,7	0,3	200	0,7	181	51
0MAR03	78 974	0,7	0,3	200	0,7	131	37
S1AR01	60 237	0,7	0,3	200	0,7	100	28
Toit	0						
Total	546 114					906	258

Remplacement de refroidisseur – évaluation de la puissance requise Évaluation des pertes par conduction

Zones	Pavillon	Orie	ntation	Façade [pi²]	Fenestration
	Hubert-Aquin (A)	Nord-Ouest	Ste-Catherine	18 333	23%
Extérieure	Hubert-Aquin (A)	Nord-Est	Berri	30 399	28%
LXterieure	Hubert-Aquin (A)	Sud-Est	Dorchester	21 521	38%
	Hubert-Aquin (A)	Sud-Ouest	St-Denis	22 617	24%
	Hubert-Aquin (A)	Nord-Ouest	Ste-Catherine	14 311	20%
Intérieure	Hubert-Aquin (A)	Nord-Est	Berri	20 131	23%
linteneure	Hubert-Aquin (A)	Sud-Est	Dorchester	4 582	30%
	Hubert-Aquin (A)	Sud-Ouest	St-Denis	11 400	46%

Orientation	Murs [pi²]	Fenêtre [pi²]	% fenêtre	Toiture (pi²)	Facteur K Btu h /F
Nord-Ouest	32 644	7 079	22%		
Nord-Est	50 530	13 142	26%		
Sud-Est	26 103	9 553	37%		
Sud-Ouest	34 017	10 672	31%		
Total	143 294	40 445	28%	137 115	35 752

Hypothèses sur les caractéristiques		
Hauteur moyenne par plancher	12	pi
Résistance thermique murs	13	Fpi ² h/Btu
Résistance thermique fenestration	2	Fpi ² h/Btu
Résistance thermique toiture	18	Fpi ² h/Btu
Température intérieure été	72	F

Remplacement de refroidisseur – évaluation de la puissance requise On assemble les données

	Condition	s extérieures	3		Charge	s de climatis	ation			
T ext (F)	T ext (C)	Enthalpie moy. (Btu/lb)	Densité moy. (lb/ipi³)	Charge air frais (tonnes)	Gains internes (tonnes)	Gains enveloppe (tonnes)	Gains solaires moy. (tonnes)	Total (tonnes)	Heures occup.	% puiss. Totale (800T)
37,5	3	13,0	0,079	0	258	-103	75	230	388	29%
42,5	6	15,0	0,078	0	258	-88	75	245	261	31%
47,5	9	17,2	0,077	0	258	-73	75	260	310	32%
52,5	11	18,7	0,077	0	258	-58	75	275	509	34%
57,5	14	23,3	0,075	22	258	-43	75	311	291	39%
62,5	17	25,7	0,074	108	258	-28	75	413	558	52%
67,5	20	29,1	0,073	229	258	-13	75	548	502	68%
72,5	23	30,7	0,073	284	258	1	75	618	462	77%
77,5	25	33,4	0,072	260	180	16	75	532	144	67%
82,5	28	35,7	0,071	315	180	31	75	602	106	75%
87,5	31	41,3	0,070	443	180	46	75	744	8	93%
TOTAL									2071	

	Condition	s extérieures	;		Charges de climatisation					
T ext (F)	T ext (C)	Enthalpie moy. (Btu/lb)	Densité moy. (lb/ipi³)	Charge air frais (tonnes)	Gains internes (tonnes)	Gains enveloppe (tonnes)	Gains solaires moy. (tonnes)	Total (tonnes)	Heures inoccup.	% puiss. Totale (800T)
57,5	14	23,3	0,075	5	26	-43	0	-12	139	-1%
62,5	17	25,7	0,074	27	26	-28	0	25	295	3%
67,5	20	29,1	0,073	57	26	-13	0	69	266	9%
72,5	23	30,7	0,073	71	26	1	0	98	108	12%
77,5	25	33,4	0,072	93	26	16	0	135	19	17%
82,5	28	35,7	0,071	113	26	31	0	170	4	21%
87,5	31	41,3	0,070	158	26	46	0	230	0	29%
TOTAL									831	

	Consolidé							
Puissance	Puissance Heures							
100%	2	1 920						
90%	6	4 032						
80%	376	240 896						
70%	694	388 640						
60%	255	122 496						
50%	446	178 560						
40%	554	177 152						
30%	817	196 176						
20%	423	67 664						
10%	332	26 520						
TOTAL	3 905	1 404 056						

Résultat final:

Une puissance de 800 T est suffisante. Un refroidisseur de 500 T et un second de 300 T ont été installés.

200 T économisé @ 325 \$/T = 65 000 \$ pour le client

Merci de votre attention!

Questions?